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CHEBYSHEV SERIES SOLUTION OF NONLINEAR ORDINARY
DIFFERENTIAL EQUATIONS: INITIAL-VALUE
PROBLEMS
By Kin L. Lee and Paul F. Byrd

Ames Research Center
SUMMARY

The approximate Chebyshev series solution of nonlinear ordinary
differential equations based on Picard iteration is discussed, Detailed
algorithms are provided for the numerical solution of initial-value problems
involving (a) a system of n first-order nonlinear differential equations,
and (b) an nth-order nonlinear differential equation. Methods to accelerate
the convergence of the iterative procedures are also proposed. FORTRAN IV
subroutines for the algorithms with options for accelerating convergence are
given.

‘INTRODUCTION

Chebyshev series have been used for obtaining efficient numerical
solution to various problems, particularly in approximating functions and in
solving certain linear differential equations and Fredholm integral equations
(refs. 1 and 2). The usefulness of the Chebyshev series lies in the fact that
it very nearly satisfies the condition for optimal polynomial approximation.

The explicit representation of the solution to a nonlinear ordinary
differential equation by some economical approximation such as a Chebyshev
series is particularly desirable in practice if the solution is part of a
larger computation and is repeatedly required for the generation of other
relevant information. Besides providing an explicit representation of the
solution over the relevant range of the independent variable, the Chebyshev
series solution of ordinary initial-value problems has other desirable fea-
tures that may make it preferable to discrete variable methods (i.e., Runge
Kutta and various predictor-corrector procedures). First, the maximum error
over the entire interval of integration can be readily and closely estimated
by inspection of the coefficients. Second, since the integration can usually
be effected over the entire interval or a small number of subintervals, the’
chances for propagation of round-off error is small. The degree M of the |
approximating polynomial as well as the interval of integration may be varied
as subroutine parameters to obtain any degree of accuracy. These features are
lacking in most discrete variable methods. A clear disadvantage of the algo- .
rithms for Chebyshev series integration of nonlinear differential equations is
the time-consuming feature of their interative construction. However, in the
case of a single nth-order differential equation, the application of the
Chebyshev series method in conjunction with the method of accelerating conver-
gence may compare favorably with discrete variable methods in computing time,



Approximate Chebyshev series solution for nonlinear differential
equations was first proposed by Clenshaw and Norton (ref. 3). The approximate
solution, found by Picard iteration, is applied to single first and second-
order differential equations. 1In a later paper (ref. 4), Norton proposed
Chebyshev procedures based on Newton iteration to solve the same equations.

The principal objective of this report is to give detailed algorithms
based on Picard iteration for obtaining numerical solutions, in the form of an
approximate Chebyshev series, of initial-value problems involving (a) a system
of n first-order nonlinear differential equations, and (b) an nth-order non-
linear differential equation. These algorithms have been programmed as
FORTRAN IV subroutines. The documentation of the subroutines is provided in
appendix C.

A basic difference between algorithms presented here and those of
Clenshaw and Norton is the choice of the interpolating polynomial. Our pref-
.erence is based on the discussion of error given in appendix B where certain
basic ideas and tools of polynomial approximation are discussed.

Although Chebyshev procedures based on Newton iteration usually seem to
converge faster than those based on Picard, they are not easily extended as
general algorithms to solve higher order or coupled differential equations.
For this reason, no discussion on Newton's method is given here. To compen-
sate for the slower convergence of Picard iteration, two methods are proposed
in this report to accelerate the convergence of the above algorithms. The two
methods are included as options in the subroutines mentioned earlier.

A discussion on convergence via an example is given to provide insight
into the behavior and application of the algorithms of this report.

A summary is given in appendix A on several fundamental properties and
tools of the Chebyshev polynomial.

SYMBOLS
Ay Chebyshev coefficients of the function ¢(t) (see eq. (Bll))
By coefficients of the 1nterp01at1ng polynomial Py (t)(see egs.

(B23) and (B27))

béO), bél) coefficients of the approximating polynomials for ¢3(t) and ¢J(t)

(see eq. (14))
Béo), Bél) coefficients of the approximating polynomials for ¢ ;1 (t) and

J+l(t) (see eqs. (16) and (20))
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coefficients of the approximating polynomials for %5 j(t) and
8] ;(t) (see eq. (46))

coefficients of the approx1mat1ng polynomials for ¢.
(t) (see eq. (47))

i J+1(t) and
1 J+l

coefficients of the approximating polynomial for ¢(1)(t) (see egs.
(67) and (68))

coefficients of the approx1mat1ng polynomial for ¢( )(t) (see egs.
(67) and (68))

the set of polynomials of maximum degree n (see eq. (B2))
the minimax of  £(x) (see eq. (B3))

a polynomial in X

a polynomial in x of degree k

the first N+1 terms of the Chebyshev series of ¢(t) (see eq.
(B13))

the Chebyshev polynomial of the first kind of degree k (see eq.
(A1))

the maximum error of SN(t) (see eq. (Bl4))

the jth approximation to ¢§p)(t)

the jth approximation to ¢(i)(t)

+ +
u, +up ...+ Uy

1
Up v up + .. tu S

the convergence criterion or prescribed convergence error of
algorithms I and II

approximately equal to, as PM(t)as¢(t)



PRELIMINARY ANALYSIS

Chebyshev Series Integration of the First-Order
Differential Equation

The basic ideas and tools used in the construction of algorithms for the
approximate Chebyshev series integration of nonlinear differential equations
can best be discussed and understood via the first-order differential equation

F - fx,P) (0

having the initial condition

F(a) = n (2)

(Algorithms for a system of first-order differential equations and an nth-
order differential equation are presented in the following sections as algo-
rithms I and II in a form suitable for coding by means of ALGOL, FORTRAN or
similar computer languages.)

Consider the sequence of functions {F4 (x)} generated by a process
attributed to Picard:

Fip () =+ j £(s,F3)ds G =0,1,...) (3)

Fo(x) =n (4)

If f£(x,F) is continuous and the partial derivative ?3f/3F is bounded in a
region including the point (a,n), the above sequence of functions is guaran-
teed by a theorem of Picard to converge to a function F(X) satisfying
equations (1) and (2) in a neighborhood [x - a| < h. If this is the case,
then without loss of generality we can consider the solution of the differen-
tial equation

9 - y(te), -lstsl (5)
with
¢(-1) = n (6)

by means of the iterative procedure involving the equations

() =0+ f ¥l5)du )

J+1



¢o(t) = n (8)

where ¢j(t) converges uniformly on [-1,1] to the solution of equations (5)
and (6).

Although vy (t,¢;), for a fixed 3§, is an explicit function of t, the
integral of (7) is difficult to obtain in practice. However, if w[t,¢j(t)]
can be accurately approximated by a polynomial P(t), then ¢j+1(t) can be

evaluated by integrating P(t) term by term. From the point of view of effi-
cient computation, the coefficients of such a polynomial should by readily
obtainable by a finite algorithm. Also, for a fixed degree M, this polynomial
should be the best possible in the sense of least maximum error (defined by
eq. (B2)). Since the computation of the best approximating polynomial is, in
general, a nonlinear iterative procedure, the use of it as an effective tool-
in the approximation of ¢(t,¢;) must be precluded. Clenshaw (ref. 3) pro-
posed the use of the interpola%ing polynomial?

M n ‘

Py(t) = 3 CxTy(t) ©)
k=0

where Ty (t) are Chebyshev polynomials defined by (see also appendix A)

T (t) = cos(k cos~! t), -l<stx<1 (10)
with the points of interpolation
T
t, = cos j% (r=20,1, . . .,M an

where TM(t) has M + 1 extrema TM(tr),= -1t

Here, however, we make use of Qy(t), a modified interpolating polynomial,
which is formed by truncating the last term of the interpolating polynomial

M+1

1"
s = 35 B85 a2
k=0 :
having
- Im -
t, = cos M1 (r =0,1, . . .,M+1) (13)

as the points of interpolation. These are also the M+2 points where
Ty+1(t) has extrema, Ty,,(ty) = (-1)¥. Analysis in appendix B shows that the
maximum error for Qyu(t) as an approximating polynomial for sufficiently large

1A double prime over the summation sign'indicates that the first and last
terms are to be halved, while a single prime indicates that only the first
term is to be halved.



M is one half that of PM(t). Numerical examples of Frazer and Hart (ref. 5)
also show that Qy(t) closely approximate the best approximating polynomial.
For this reason, Qu(t) is also called a near-best approximating polynomial.

Now suppose we assume that each member of the sequences {¢j(t)} and
{¢5(t)} can be accurately represented by polynomials of degrees M + 1 and M,

respectively. Assume also that at the jth iteration ¢j(t) and ¢§(t) are
known and of the form :
’ M+1 A
~ ' (o)
05(0) = D3 b T ()
k=0 >

(14)
and

M
o3 = D" b ()
k=0 J

"then an approximate chebyshev series solution for equation (5) can be obtained
as follows:

We approximate first ¢§+1(t) = w[t,¢j(t)] by the near-best approximating
polynomial Qyu(t) to obtain

ZM:' (1)
k=0
where Bﬁl), according to equation (B27) is
1) ) M+1 ,,
1) _ 16
B =y O Wlte, 05 (61T () (16)
r=0
with
o
t. = COS g (17)
Since Bél) is a linear combination of the form (A22), it can readily be

evaluated for a fixed k by means of recurrence formula (A23). Accordingly,

: 1 ]
M+l = T ‘P[tMﬂ »95 (t1)]
Cy = Yit ,CI)'(tM) + ZtkC
M [ M2 7] ] M+1 { (18)
ey = ¥tr 05t * 2teray - e
(r=M-1,M-2, .. .,1)




A %-w[to,¢j(toi]+ city - 2 (19)

Denote the\integral of equation (16) by the (M+l)st degree polynomial

M" (l) . M+1' B(O) 20
o ~ 3" B wa - 2 B (20)
k=0 =0

Upon performing the indicated integration with the aid of equation (A9) and
equating coefficients of Tk(t), one obtains

s

(1) _ (1)
BéO) = —Ell—iﬁ-k+l k=1,2, . . .,M (21)
(1)
B
0 M
BN(H% - M (22)

(The same results can also be obtained if equation (B19) is applied.) The
constant of integration (1/2)B§0) remains to be determined. It can be
computed if one notes that

¢j+1(—1) =
and by equation (A31) that
M+l' K
qbj+1('1) =Z (-1} B}SO)
k=0
Thus
() M+1
B0 = 2[” ‘Z(—l)kBISO)] (23)
k=1

This completes one iteration, If

|60 3@ < w=01, ... (24)

where € 1s a prescribed convergence error, we are through. Otherwise,
replace each bkp) by Bép) (p = 0,1) and initiate another solution..



The entire iterative process can be started by settiﬁg ¢o5(t) = n, that
is, by taking bé") = 2n and blgo) =0, for k = 1,2, . . .,M+l. A better

initial approximation sometimes can be made by utilizing knowledge of ¢(t,¢),
for example, if ¢ (t,¢) involves only the dependent variable ¢.

Accuracy of Solution

When the condition (24) is met, we are interested in how well the
approximate solution satisfies the given differential equation. If the poly-
nomial approximations (15) are substituted into equation (5), one obtains,
upon taking absolute values,

1M . M+1' 0
Z blgl)Tk(t) - zp_t,z blg )Tk(t)
) k=0 k::O
M, M_, M, M+1
< D e nm - sPn o]+ D e - vy v Or o
k=0. k=0 k=0 k=0
But
M 1] .1 M H -
Z blg )1, (¢) —Z Blgl)Tk(t) < M+ 1)e (25)
k=0 k=0
by condition (24). Let
M+1 o

o[ty vim| = Y M o
k=0

It then follows from equation (B36) that

M+1

M, 9
z : B Te(e) - v t,z :bxso)'fk(t) il | * 2 Z algl)l (2e)
k=0 k=g ez



Consequently, we see by equations (25) and (26) that

M . M+l'
Y O - v 6y BT f [ < 0+ e+ |ast)
k=0

+ 2 Z lakl 27)
k=M+2

k=0.

Hence if bél) - Bél) < ¢ for each k and if M 1is sufficiently large, the
M+l Ml

approximate solution E bﬁO)Tk(t), and, a fortiori, E Béo)Tk(t), will
k=0 k=0 “

satisfy the given differential equation with an error close to (M + 1)e. 1In
practice, we say that M is '"'sufficiently large' when larger values provide
no change greater than ¢ in the coefficients. Also, since the Chebyshev -
series is unique, when (M + l)e is made small by an appropriate choice of ¢

and M, the coefficients B(O) of the finite series will closely approximate
k

those of the Chebyshev coefficients Aéo) of the solution (see eq. (Bl1).

Example

To illustrate the accuracy of the above procedure, let us find a
polynomial approximation for tan[(n/8)(t + 1)] for -1 < t < 1 with a maxi-
mum error less than 0.5x10-8, One can easily verify that the given function
satisfies the differential equation

Lo 1+ e2(0)], -lstsgl (28)

Chlcu
-

with

$(-1) = 0 (29)
Hence, the method given in this section is applicable.

The approximate Chebyshev coefficients for both the solution and its
derivative corresponding to M = 16 and e = 0.5x10710 are shown in table I(a).
A total of 13 iterations were required. Tabulated values of the approximate .
Chebyshev series corresponding to discrete points of the independent variable
are given in table I(b). Numerical results suggest that M = 16 is suffi-
ciently large since the coefficients corresponding to & = 0.5x10-10 for
M > 16 yield no change greater than €. In view of equation (26), the approxi-
mate solution must satisfy the differential equation with an error bound close
to 8.5x10~10, The same conclusion can be drawn by the examination of the coef-

ficients alone. In fact, since Bél) is approximately equal to aél)



according to equation (B28) and

member of inequality (27) gives us

17¢ + a7 + 29 |ax | ~ 8.7x10710

k=18

(
Beiy/By

< 1/5 for K > 7, the right

A check of the tabulated values of table I(b) with those of Abramowitz and
Stegun (ref. 6) shows agreement to 10 decimal places.

TABLE I.- CHEBYSHEV SERIES APPROXIMATION OF TA&JE%Ct + lﬂ ) (-1

10

(a) Approximate Chebyshev coefficients

(0)
By

Bél)

QOO UTRWNREO

0.9113043408269388D 00
0.4894686436450291D 00
0.4284834890908355D-01
0.1024434335477160D-01
0.1453268753787471D-02
0.2787802534394446D-03
0.4483018228371541D-04
0.7992572697332448D-05
0.1340847727289307D-05
0.2331260728730840D-06
0.3968754154824808D-07
0.6840670790663591D-08
0.1170504525821132D-08
0.2011467240884598D-09
0.3447781322812264D-10
0.5912174018325965D-11
0.1050990891537928D-11
0.1861901636328807D-12

0.1043307398148425D 01
0.1835797842596252D 00
0.6437011085836632D-01
0.1218638862329105D-01
0.2904050729736723D-02
0.5602385929912773D-03
0.1162481953422768D-03
0.2227640558669249D-04
0.4352177579622525D-05
0.8228419500635855D-06
0.1559082679070123D-06
0.2909111909862381D-07
0.5413510512413251D-08
0.9990104789166475D-09
0.1836956861132969D-09
0.3363170852921371D-10
0.6330465563517943D-11
0.0000000000000000D-38

(b) Function values

t tan [—STI-(t + 1)]

-1,
-0.
-0.
-0.

COONNPNONDONKO
loNolleNolel el el oo

I
OO0 O OO

.0000000000000000D~-38
.7870170682457329D-01
.1583844403245379D 00
.2400787590801460D 00
.3249196962328421D 00
.4142135623731530D 00
.5095254494543512D 00
.6128007881399821D 00
.7265425280053249D 00
.8540806854634090D 00
.9999999999998522D 00

t<1)



For economy of computation, note that if Nj < N, then

N' 1 Nl 1
E BTy (£) - Z BTy (t) | < ﬁ: |3 (30)
k=0 k=0

k=N1+1

(See also eq. (B16)). Thus, in the case of the approximating polynomial of
the above example, ignoring the last six terms from the finite series results
in a maximum error of 0.14x10"8, Hence, an 11lth degree instead of a 17th
degree, polynominal can be used to approximate tan[(ﬁ/S)(l + t)] and still
satisfy the maximum error requirement of 0. 5x1078

INTEGRATION OF A SYSTEM OF n FIRST-ORDER DIFFERENTIAL EQUATIONS

In this section, the basic ideas applied to the construction of an
approximate Chebyshev series solution for a single first-order differential
equation are extended to provide an algorithm for the solution of a system of
n first-srder differential equations. It is given in sufficient detail to
facilitate computer programming as well as the discussion of acceleration of
convergence. The basis for the more general algorithm is the following
theorem.

Theorem. Let a system of n first-order differential equations be
defined by

dFy ' . X
0 = fi(GFLFa, o0 LFy) Ix -al cc,, G=12...,0. (3

with the initial conditions
Fl(a) = ni 3 (1 = 192: . . -:n) (32)

Furthermore, let each of the functions fi be continuous and have bounded
partial derivatives

IBFJ <K, (i,j=1,2, .. .,n) (33)
in the region
Ix-al <€y, [Fy-milsC, (i=1,2 .. .0 (34)
If '
h=min(co,Eil-,C—L2-,. : E{i) (35)

11



where
L = mgx[max]fi(x,Fl,Fz, .. .,Fn)ﬂ (36)
i

in the region defined by (34), E?en the sequence of n functions

F1,j (x),F2,5(x), . . .,F (x)l defined by

n,J j=0

x .
Fi 541 () =g +jafi(s,F1,j,F2’j, c.oLBpgds, (B=1,2, .. .m0 (37)

with

Fi’o(x) =n;, i=1,2, .. .,n) (38)
converges uniformily on ]x - a| < h to a unique set of functions of F;(x),
Fo(x), . . ., Fa(x) satisfying equations (31) and (32). (For proof of a simi-
lar theorem, see Tenenbaum and Pollard (ref. 7)).

Besides providing an iterative procedure (eqs. (37) and (38)) for
obtaining a solution, the above theorem also guarantees an interval of conver-
gence, However, the estimate h in equation (35) usually proves to be con-

servative if not difficult to find. In practice, the interval of convergence
is usually assumed or determined by trial and error.

Suppose that the system (31) has a unique solution F;(x)

(i=1,2, .. .,n) on a<x<b satisfying the initial conditions given by
equation (32). In order to comstruct the Chebyshev series for Fj;(x), make
the change of independent variable

\
X =ct +d,
with
and
so that -
dFi 1 1 .
Fi(x) = ¢5(t), g =c"¢;(t), Fi(@) =¢;(-1) =n;
Substitution in equations (31) and (32) then yields
3 (t) = Y3 (t,01,62, - » . ¢), -l<sts<l, ({d=1,2...,0 (40)
with
$; (1) = n;, i=1,2, .. .,n (41)

12



The same change of variable for equations (37) and (38) gives the sequence of

n function5{¢1,j,¢2,j, S "¢n,j‘. . defined by
J:

¢i,j+1(t) =TH_'*I2-wi(u,¢l,j’¢2,j, . . -:¢n,j)du > G=1,2, .. .,n
) (42)

and
¢i,0(t) = ni s = 1,2, .. .,n) (43)
which converges uniformly on the closed interval [-1,1] to a set of functions

61(t), 92(t), . . ., ¢,(t) satisfying equations (40 and (41). One also
obtains by differentiation the equations

q’i’j-;-l(t) = q)i(t:q)l,j:‘bz’j, « e -,¢n,j) > (i = 1,2, PR .,n) (44)

with .
¢i,1(t) = ¥(t,ng,n2, . . ':nn) (45)

We are now ready to proceed with the algorithm for an approximate
Chebyshev series solution of n first-order differential equations.

Algorithm I

As in the case of a single first-order differential equation, it is

assumed that the sequences{¢1’j,¢2,j, .. "¢n,j} and
o =0
{¢; j’¢£ jo oo -,¢ﬁ j} can be accurately approximated by polynomials of
3 L] L j:o
degree M + 1 and M, respectively. For simplicity of notation, let
M+l | 0) M, -
_ _ § : 0 ' _ 2 : 1
¢i,j(t) - bk,iTk(t) > ¢i’j(t) - bk,iTk(t) (46)
k=0 k=0
M+1' M '
. - z : (0) ' _ (1) :
95,5+1(t) = Bk,iTk(t) , ¢5,5+1(8) = Bk,iTk(t) (47)
k=0 k=0

13



Also, let € be a prescribed convergence error between b(l) and Bélg. The

k,i s
approximate solution of (40) can be obtained as follows:

1, Set X ,
tk = COS =+ k=0,1, . . . , M+ 1

(These are the M + 2 points where Tm+1(t) assumes its extrema.)

2. Set
b =2, @=12 ...,
béog =0, i=1,2, ... ,n;k=1,2, .. .M+ 1)
blgli)l= 0, ({=1,2,...,;k=0,1, ... ,M

(This is equivalent to the initial approximations ¢;(t) = Nis
did=1,2, . .. ,1)).

3. Compute

M+1
- Z' (0) .o C koo
¢i,j(tk) = br,iTk(tk) , i=1,2, .. .,n; k=0,1, . . . M+ 1)
r=0
4. Compute
¢;,j+1(tk) = ¢i[tk’¢1,j(tk)’ o e e ’¢n,j(tk)]

i=1,2, .. .,m;yk=0,1, . . . M+ 1)

5. Compute (by making use of eq. (B27))

M+1"
1 2 .
BIE’% = T z: 0 g (T () o G = L2 oo npk=01, .. L)
L =0

(We have here approximated ¢i j+l(t) by the Mth degree polynomial
b
M

1] 7
E Bﬁl)Tk(t), where according to Theorem B5
k=0

14



1
2 —
B]Ef:)L —)T"TJ'_]. 1’)1 [t’¢1,j’¢2,j’ . ,q)n,j]Tk(t) (1 - tz) 1/2 dt

for a sufficiently large M.)

6. Compute (by eq. (B19))

B(1) _ 1)
B(O) 2K k+1,i , Gi=1,2, . ..,3k=1,2, . . . M
(1)
glo) _ _M (i=1,2 n)
M+1 1 ZCM'_,_I] E) - gy o s e

7. Computé (using the fact that ¢i j+l(—1) =N and eq. (A31))

) M+l
(o) _ E k(o) .
Bo,i =2 n; - (-1) Bk,i , (i=1,2, . . . ,n)

(We have in this and the above step integrated

M
' _ ')
¢5,541(8) = Z By 1Tk (t)
k=uv

which results in the (M + 1)st degree polynomial

M+1

05,541 () = E BIE(,):)'LTk(t))

k=0

8. If ]Bélg - bélg] < g for all k and i, we are through. Otherwise,

9., Set

(P _ (@) (n =
bl =Bt =00

for each k and i and return to step 3.

Note: To take into consideration the case when ¢' 1(t) = ¢ (t) =0 for each

i, step 8 should be bypassed until the second iterdtion

1..:
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Example I

As an example, we solve the boundary-layer equation

d3F d2F dF

2
E;;-+ 2F = Ei) +1=0, 0<xx<6 (48)

with the initial conditions

d2F

= —

x=0 ? dX2

dF

F(0) = 0, Ix = 1.311937693880 (49)

X=0

using algorithm I with a prescribed convergence error € = 0.5x10710,

We first rewrite the given differential equation as a system of three
first-order differential equations. Let F;(x) = F(x), Fo(x) = dF/dx, and
F3(x) = d®F/dx2. Equation (48) can then be equivalently written as

dF; dF, dF,
& " RW. =P, i

F,2(x) - 2F) (x)F (x) - 1

with initial conditions Fj(0) = 0, F,(0) = 0, F3(0) = 1.311937693880.

We were unable to find a solution to the example by the method of this
section over the entire interval because the iteration process failed to con-
verge. However, we can obtain a solution over subintervals of the given
interval. Let the given interval be subdivided by the q + 1 points

0 =Xy <Xp <. % Xq = 6 (50)
On each of the subintervals [xr‘l,xr] (r =1,2, . . . ,q) the change of

variable x =ct +d, ¢ = (X, - xr_l)/z, d==(xr + xr_l)/z enables one to
rewrite equation (48) as

618D = chy (£, 63(E) = coy(t) , 04(8) = c[6,2(t) = 201 (E)05(8) - 1]

The solution can then be found for one subinterval at a time. Initial condi-
tions for each subinterval are the function values of the end points of the
previous subinterval, except the first where ¢;(-1) = F1(0), ¢o(-1) = F,(0),
and ¢3(-1) = F3(0). The approximate Chebyshev coefficients Bﬁoi of
F1(x) = F(x) for the case with M = 11 and Xog =0, x3 =1, xp =2, . .
Xg = 6 are given by table II(a). The coefficients for the first and second
derivatives are not tabulated but may be generated in terms of Béoz from

2

equation (B19). A tabulation of the values of F(x), dF/dx, and d2F/dx?

16



corresponding to x = 0(0.2)6.0 is provided by table II(b). Numerical results
indicate that the approximate solution satisfies the differential equation

with an error bound of the order 0.5x10-10, since Béoi exhibits no change to
3

10 decimal places for M > 11 (see Preliminary Analysis). Note that the first

and second derivatives approach unity and zero (accurate to 10 decimal places),

respectively. This is because the initial value of the second derivative was

determined numerically from the solution of the boundary-value problem

involving the same differential equation (45) and the boundary values

dF dF
F(O) =0 ’ ‘a}' 0=0: _d-)-(— =1
x= =0

(See L. Fox (ref. 8) for the numerical solution of boundary-value problems by
means of initial-value techniques).
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TABLE II.- APPROXIMATATE CHEBYSHEV SERIES OF EXAMPLE I;

(a) Approximate Chebyshev coefficients of F(x) =

(o)
By

.3892366850285570D 00
.2510773451273367D 00
.5149697317862475D-01
.4884131498391032D-02
.9147538219192970D-04
.1415676089930017D-04
.4392922674440762D-06
.1455950532358585D-06
.4849170368489048D-08
.8282513783615847D-09
.9882967257068829D-10
.6903978861669351D-11
.8827151972331154D-12

.1906417059176552D 01
.4721517772513179D 00
.9310264019825763D-02
.1833951624942309D-02
.2059970855772206D-03
.8457783925547068D-05
.8661141518947492D-06
.1097311409086846D-06
.3074443225322085D-08
.1144396357769898D-08
.1743676140975036D~10
.9458996086397773D-11
.4752447471050794D-12

.3863311229682918D 01
.4991658557862458D 00
.3890170133408291D-03
.1226429401112712D-03
.2723834050810958D-04
.4276208831696196D-05
.4483551620850419D-06
.2359560210099267D-07
.1071584776352978D-08
.3086935209765476D-09
.1991941542267561D-10
.7958215315696075D-12
.2178984230703938D-12

M= 11 AND ¢

Woo~JOUTWVRNMO

0.5x10710

1 1 1 t
OO0 OODODOCOOCOO

OO OCOOCOCOCO

COOCCOCOCOCCOO0OO0OCOCOC

(0)
Bl

.5862202712178695D 01
.4999948514648397D 00
.2955377779468674D-05
.1245878270158787D-05
.4005516561512526D-06
.1007087050914716D-06
.2006791017080924D-07
.3171829281200812D~-08
.3907806881905951D-09
.3545559422189501D-10
.1928744432685055D-11
.2469520799973746D-13
.1720633666410817D-13

.7862196443651593D 01
.4999999943549484D 00
.3692652891795766D-08
.1878812574654078D-08
.7638849269566333D-09
.2536970874119266D-09
.7001695230546277D-10
.1625416567214393D-10
.3200698242324569D-11
.5361639630217125D~-12
.7642312708592647D-13
.9226205658049735D-14
.9246076126956381D-15

.9862196437121186D 01
.5000000000008645D 00
.7747691377346653D-12
.4426482328826845D-12
.1981233464324698D-12
.8628422050923251D-13
.2645800245559826D-13
.9037083251041076D-14
.1891137709394048D-14
.5728442411781188D-15
.7540264708912517D-16
.2460153293203471D-16
.2698458740408366D-17

Fi (x)

4 < x5
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TABLE II.- APPROXIMATE CHEBYSHEV SERIES OF EXAMPLE I;

M= 11 AND ¢ =

0.5x10-10

(b) Values of the approximate solution and the first two derivatives

(= el o B el e O OO O OO OO COOOCOo QOO OC

oo CCO

Fx)

.1387778780781446D-
.2490564860649391D-
.9430258133873859D-
.2003061101255821D
.3353391239337122D

.4924144512322781D
.6654189143037998D
.8493213259061367D
.1040250891316518D
.1235435703128323D

.1433033404109585D
.1631909451187109D
.1831417188863473D
.2031215672918176D
.2231138667864316D

.2431111230808782D
.2631102124524431D
.2831099311572934D
.3031098503447131D
.3231098287668217D

.3431098234149990D
.3631098221826554D
.3831098219193559D
.4031098218672120D
.4231098218576820D

.4431098218561269D
.4631098218559299D
.4831098218559648D
.5031098218560366D
.5231098218561158D
.5431098218561917D

16
01
01
00
00

00
00
00
01
01

01
01
01
01
01

01
01
01
01
01

01
01
01
01
01

01
01
01
01
01
01

COOoOCOo COCOCOCO COOCOo O OCoC O OO OO OOCO

COOCOCC

for x =

0(0.2)6.0

dF
dx

.0000000000000000D-
.2423943538939113D
.4449866213741513D
.6087099439315713D
.7357728939772173D

.8298680510454096D
.8959772698742670D
.9398267343977971D
.9671738223714611D
.9831581570755136D

.9918921621644430D
.9963447565741975D
.9984593547253356D
.9993937528203719D
.9997775510127270D

.9999239691430687D
.9999758156979835D
.9999928465126406D
.9999980337347978D
.9999994980713486D

.9999998810724133D
.9999999738584204D
.9999999946730537D
.9999999989958596D
.9999999998268141D

.9999999999737648D
.9999999999991659D
.1000000000003167D
.1000000000003867D
.1000000000004142D
0.

1000000000005115D

38
00
00
00
00

00
00
00
00
00

00
00

00.

00
00

00
00
00
00
00

00
00
00
00
00

00
00
01
01
01

e
dx?
0.1311937693880000D
0.1112107122641016D
0.9145465290677766D
0.7245087590634542D
0.5492147378176965D

01
01
00
00
00

0.3959361369563590D
0.2699903096575698D
0.1733584569022934D 00
0.1044301711933930D 00
0.5884905029559881D-01

00
00

0.3095379362802304D-01
0.1517036399321181D-01
0.6918247270753256D-02
0.2932544923138562D-02
0.1154412461402519D-02

0.4217264542212354D-03
0.1428864892765967D-03
0.4487654564845384D-04
0.1305947442842973D~04
0.3520034178472342D-05

0.8785038983643211D-06
0.2029509793444975D-06
0.4338982542142417D-07
0.8583529424554144D-08
0.1572242307020353D-08

0.2766056552012288D-09
0.4395167933392727D-10
0.7029429704709523D-11
0.1593260600584493D-11
0.3583023509204903D~-12

01 -0.8557528262266267D-11
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Remarks on Convergence

In the application of the method of the foregoing section the integration
involved in each of the iterations

t
01 j+1(t) =y + S . Vi (u,91,5582,55 « « - 50y j)du

is an approximate one. The accuracy by which ¢i,j+l(t) can be evaluated

depends on how accurately wi(t,¢1’j,¢2,j, e . ’¢n,i) is approximated, or,
M 1
:E : 1)
equivalently, on the degree M of the polynomial Bg,ka(t) used to
k=0
approximate wi(t,¢1’j, . e ,¢n,j)- It is to be expected that the rate

of convergence of the functions ¢i,j(t) may be influenced by M. Table III

suggests that this is indeed the case. Numerical results showed that an

M 2 11 is sufficient to provide an approximate solution to 10 decimal places
for example I. However, the number of iterations required, for a fixed conver-
gence criterion e, may vary with M. Note that the number of iterations
needed for the first two intervals remained fixed for each M. On the other
hand, the number of iterations required for convergence over the remaining
intervals decreases with increasing M. The same table shows, in the case of
5 < x < 6, that there is a rather sharp decrease in the number of iterations
when M 1is incremented only by 1.

TABLE III.- THE INFLUENCE OF M ON THE CONVERGENCE OF ALGORITHM I.

) nterval D<x<1l]l<cx<2|2<x<3|3<x<4|4<x<5|5<xx<6
11 17 21 30 38 44 53
12 17 21 28 36 41 42
13 17 21 26 34 39 39
14 17 21 25 32 37 29
15 17 21 25 29 33 28

Each entry of this table indicates the number of iterations required by
algorithm I to solve equation (48) having the indicated M and interval of
integration. The convergence criterion is € = 0.5x10"10, Since the approxi-
mate Chebyshev coefficients agree to 10 decimal places for all M > 11, the
solution for each M is also accurate to 10 decimal places.

An observation one can make is that with an appropriate choice of M the
computing time used for solving a particular problem can be minimized. When
an appropriate choice of M 1is not available it may be prudent to use a
larger M than is deemed necessary for a prescribed accuracy (e.g., using
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M = 15 instead of 11 for example I) to insure convergence within a moderate
number of iterations. In the next section it will be shown how the conver-
gence of the iterative process can be accelerated for a fixed M, thereby
improving the efficiency of algorithm I.

Acceleration of Convergence

To economize computation, two methods consisting of '"modification of rows"
and 'modification of columns" are proposed in this section to accelerate the
convergence of the algorithm. Before we proceed further, the basic toecl
required by these methods must be given.

Steffensen's sequences.- Consider first the modified sequence associated
with the single-point scalar iteration function Yj+1 = f(yj) having the prop-

erties: (a) the equation y = f(y) has a solution y = u; (b) the third deriva-
tive f"'(y) is continuous in a neighborhood of u with f'"'(u) # 1. Let the
sequence be denoted by

0 (1) 2

y ) (2) (51)
(o) v L)

of the sequence is an initial approximation to wu.

(0)

The first member vy,

The other members are evaluated in the order indicated by the formulas

) - f(ygr)), y§) - f(yij) (52)
(r) (1)) ?
Yo -y
i - ( ( : - ) Y I S S S O
Y L, (), (1)
ygr+1) _ Y2 2yq Yo (53)
ys if yT g0 )y

It can be shown that the sub-sequence ‘yér)} having any prescribed ygy is

quadratically convergent (see, e.g., ref. 9). Therefore, the application of
equations (52) and (53) would effectively result in accelerating the conver-
gence of the iteration function Yj+1 = f(yj) whose regular sequence may be

only linearly convergent. Equation (53) is known as Aitken's formula, but the
scheme consisting of equations (52) and (53) in the evaluation of the sequence
(52) is due to Steffensen (see ref. 9).
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Consider next the more general case of the single-point vector iteration
f defined by ’

> > >
Yjsr = £0y) (54)
where ;j is the N-dimensional vector
-> _ i . T
Yj - (yl,j’YZ,J’ . ’yN:j)
- > > > >
it is also assumed that the vector equation y = f(y) has a solution y = u,

and %(;) has certain desirable properties analogous to the scalar function
f(y). However, even without knowing precisely what the desirable properties
should be, we can, at least formally, generate a sequence of vectors analogous

to the sequence associated with the scalar iteration function. This is accom-
plished by recomputing a new '?0 after every N + 1 sucessive applications of

(54).
Let the sequence be denoted by

R O T OO
50 50 [5
50 [ 30 |5

(55)

>(0) >(1) >(2)
IYN+1 IN+1 YN+1

Define two NxN matrices AYy and A%Yy by

>\T >{T >(Tr
pg = (557,50, L5
w¥g = (5,50, L ey ()

with |
_ A;Cr) _ () (r) , AZ;(,TJ

- . () z(r) | z(r)
j Yj+1 Yj i =Yy o 2 +

jr2 T e T Y

The first member ;O of the sequence (55) is an initial approximation of u.
The other members are evaluated in the order indicated by the vector
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equations

;j(fi = —:E(yj(r)> (J = Osla S ’N) (56)
D - avo(a2vg) T aneT, ae det (a2v0) £ 0

yEr = (57)
. o ()

In particular, when N = 1, equations (56) and (57) reduce to (52) and
(53), respectively.

Steffensen's iteration procedure for the vector case has not been
investigated fully from the theoretical point of view. However, in practice,

the sub-sequence ‘;gk)

, for a large number of cases has been found, as in the

scalar case, to be quadratically convergent (see ref. 9). Consequently,
unless the regular sequence generated by equation (56) is already quadrat-
ically convergent, it would be less rapidly convergent than that of
Steffensen's. Even in the case when the former is divergent, the latter has
been found to be convergent in many cases.

The remainder of this section discusses the utilization of Steffensen's
sequence in the acceleration of convergence for algorithm I. The approach
here is equally applicable to algorithm II.

Recall that we have from algorithm I the sequences {¢i J.(tk)’o°

> j=0
i=1,2, ... ,n;k =0,1, . . . ,M+2), where each iterate of each sequence
is generated at step 4 of the same algorithm. These sequences can be put in

the form of a single sequence of rectangular arrays

-

Vi1, Yi1,2,3 Coe Y1 Me2,j
‘Pz,l’j wZ,z’j : : : w2’M+23j €
Pis = | . . (58)
01,5 Yn,eLj ¥n, M2, j
(j =0,1,2, . . .)
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where
- 1
ik, = 04,5 0k-0)

The (M + 2) column, being ¢; j(t) evaluated at t = -1, remains unchanged for

all j. Each entry of the initial array [wi,k,l] is the value of the initial

approximation to ¢;(t) evaluated at te s Specifically, according to the
b 8

way algorithm I was constructed, this array has the elements

Vik,1 = Vi (tonnys o e o) (i=1,2, ..., k=1,2, . .. ,M+2)

associated with the initial approximation
¢i’0(t) = Ny id=1,2, . . . ,n)

However, from the point of view of convergence, it may be advantageous to
interrupt periodically the computation of the iterative procedure and restart
it by supplying to the algorithm a new initiating array [wi K 1]. The con-

’ E It ]

struction of Steffensen's sequence provides a clue as to how this process of
iteration modification can be applied effectively. An approach to the solu-
tion of this problem might be attempted by first forming various sets of
sequences corresponding to different groupings into disjoint subsets of all

the entries of the array [wi ; k]. In particular, for ease of implementation
2 >

we consider the four sets of sequences consisting of

(a) The corresponding elements

{wi,k j} (G =1,2,, « « .03 k=1,2, . .. ,M2) (59)
3 j_—-_o

(b) The total array [@i,j,k]

(c) The corresponding rows

{(wi,l,j:wi,z,j’ SR ’wi,M+2,j)}_ . (Gi=1,2, ..., (60
J:

(d) The corresponding columns

T(XJ

‘(wl,k,j’wZ,k,j’ ot s) }_ . (k =1,2, . . . ,M#2) (61)
J:

If certain assumptions, which may or may not be true, are made about each

of these sequences, the initial array [wi k 1] can be modified by any one of
four different ways. T
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Modification of individual entries.- If each sequence of equation (59)
can be assumed to be iterates of a single-point scalar iteration function,
each element of the initiating array [wi X 1] can be modified by Aitken's
formula (53) one at a time. Thus, 37 >

(4,65 ~ ¥,1,2)

ik,3 ~ Yik,2 t Vit

(?i,k,l)new = wi,k,3 )

For cases n > 2, however, numerical results show that such a procedure not
only failed to hasten convergence but caused the algorithm to diverge. This
is not surprising because too much information is lost due to our disregarding

- ” is a func-
[wl’J ’k],jz[)

tion of all the elements of the preceding array. The case with n =1 is a
special case of modification of columns to be discussed in a later paragraph.

implicitly the fact that each element of an array of

Modification of the total array.- In contrast to the method of modifica-
tion of the last paragraph, the entire rectangular array [¢ ] can be con-

i,j,k
sidered as an iterate of a single-point vector iteration function of n(M + 1)
components. Then the initiating array [wi,j,k] can be modified in toto by

means of the matrix equation (57). This fully takes into account the depen-
dence property mentioned in the last paragraph. Nevertheless, such a scheme
could hardly be considered feasible from the standpoint of efficient computa-
tion for the following reasons. Even if n and M are moderate in size, the
matrix to be inverted is of a high order n(M + 1). Furthermore, the first
modification cannot be effected until after n(M + 1) + 1 iterations by which
time the algorithm has already converged or will have converged to a solution
after a few more iterations. The case for n = 1 is more tenable but it sim-
plifies to the method of modification of rows to be discussed presently. (The
abbreviations MR and MC in the sequel denote the methods of modification of
rows and modification of columns, respectively.)

In view of what is said in the preceding paragraph, any acceleration of
convergence procedure involving either modification of individual entries or
the total array must be ruled out. On the other hand, the methods MR and MC
intermediate in complexity between the two previous ones mentioned are found
to be effective in the acceleration of convergence of algorithm I as well as
algorithm II of the following section.

Modification of rows (MR).- Suppose each of the sequences (60) is an
iterate of a single-point vector iteration function of M + 1 components.
Then the initiating array [v. ] can be modified one row at a time as
follows: 1,k,1

Let [Wi " j] (j = 2,3, . .. ,Mt3) be the M + 2 rectangular arrays
generated by the algorithm for an initiating array [y; k,l]' For each i, set
Y =y sy, s v T G =12 M+3)
j_l 1,1’39 i,z,J, . . . ) i’M"‘"l,j J s P . . s
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(r

new initiating array is then formed by setting

Compute yg *1) by means of the matrix equation (57). The ith row of the

(r+1) N
Yik,1 = Y, (k = 1,2, . . . ,M+1)

After all the rows of [wi Kk 1] have been modified, the iterative process is
H >

restarted by returning to step 5 of algorithm I. The testing at step 8 should
be bypassed until [¢y; j ,] has been generated in the following iteration.
3 Ed

Numerical results suggest that unless the sequence of rectangular arrays
are already quadratically convergent within M + 2 iterations with no modifica-
tion, MR modification, in many instances, substantially reduces the number of
iterations required for convergence. It is rare when modification is needed
more than once. ‘

Since the methods MR and total array modification coincide for n = 1,
the latter method can be considered as a special case of the former in this
instance.

The feasibility of MR as a convergence acceleration procedure lies in
the fact that it does not have the complicating features of total array modi-
fication, and unlike entry-wise modification it evidently does make sufficient
use of the history of previous iterations to be effective in the acceleration
of convergence.

The following method provides another and possibly more effective
procedure in the acceleration of convergence for both algorithms I and II.

Modification of columns (MC).- Since MC modification is also inter-
mediate in complexity between the first two methods discussed, it possesses
the desirable features of MR modification. Moreover, when n is smaller
than M, as often is the case in practice, it may be preferable to modify the
initiating array [wi,k,ll by the former rather than the latter method. The

validity of the statement will become evident in the ensuing discussion.

The assumption made here is that each of the M + 1 sequences (61) are
generated by a single-point vector iteration function of n components. Mod-
ification in this case is carried out after every n + 1 iterations by making
use of the n + 2 rectangular arrays [wi,j,k] (j = 1,2, . . . ,n+2) saved in

storage. Each column (specifically the kth) of the initiating array is
re-evaluated by setting

+(r) T
= (k502,050 0 ki) G =12, ... ,042)

»>(r+1

and determining vyg ) by means of the matrix equation (57). The column in
question is then replaced with new entries by setting
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ik,1 ~ 7i,0 (i=1,2, ... ,n)

The iterative process, after every column of [wi Kk l] has been thus modified,
> >

as in the case of MR modification, is restarted at step 5 of algorithm I.

The remarks made for MR modification about the testlng at step 8 is
also applicable here.

Since M 1is usually set larger than n in practice, to achieve a
desired accuracy, the MC method, besides saving storage allows modification
to take place sooner and more frequently than modification by the MR method.
When this occurs, numerical results show that convergence is accelerated more
strongly than by MR modification.

A comparison of the rates of convergence (in terms of number of itera-
tions and machine time applied to the solution of example I) for iteration
with MR and MC modification as well as no modification is given in table IV.
It shows that both MR and MC methods substantially reduced the number of
iterations and machine time required for convergence. It also shows that both
the total number of iterations and the total machine time over all of the
‘indicated intervals for MC modification is significantly less than that of
MR. This should not, however, mislead us into precluding MR modification as
a tool in the acceleration of convergence. Although numerical results show
that whenever both methods work, MC modification works better; it is quite
conceivable that acceleration of convergence in certain cases may fail for MC
modification and work well for MR modification. For specific examples a
proper combination of methods (with or without modification) may optimize
the computation time required.

TABLE IV.- A COMPARISON OF CONVERGENCE FOR ITERATION WITH AND WITHOUT
MODIFICATION (ALGORITHM I).

Modificatio Interval 3<x< 4 4 < x<5 5<xg6 Total
None 38(5.16) - 44(6.00) 53(7.32) 135(18.48)
MC 19(3.42) 18(3.30) 14(2.52) 51(9.24)
MR 25(4.50) 15(3.06) 15(3.12) 55(10.68)

Each entry of the table indicates the number of iterations required by
algorithm I to solve example I for the indicated method of modification and
interval of integration. The machine time in seconds on the IBM 7094 for the
corresponding iteration is given in parentheses. The degree of approximation

is M = 11 and the prescribed convergence error is e = 0.5x10-10,
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An Alternate Procedure

Instead of using equations (42) and (43), it is sometimes preferable from
the point of view of faster convergence to construct an algorithm to solve a
system of n first-order differential equations based on the equations

't N
¢l,j+l(t) = nl + wl(u’¢l,j’¢2,j’ LR ’q)n,j)du
v-1
rt
¢2,j+1(t) = T12 + ] wz(u’¢l',j+1’¢2,j’ —_— ’¢n,j)du
-1 > (62)
t
¢n,j+l(t) = ﬂn +J'l wn,(u’¢l,j+1’¢2,j+1’ . e ’¢n—1,j+1’¢n,j)dt
with
¢i,0(t) = ni i=1,2, . .. ,n) (43)

These equations differ from equations (42) and (43) in that the most
recent information is used at each step. It will be shown in the next section
how the specialization of (62) serves as the basis for a more efficient
algorithm to solve an nth-order differential equation.

INTEGRATION OF AN nth-ORDER DIFFERENTIAL EQUATION

An nth-order differential equation can be expressed as a system of n
first-order differential equations. Consequently, numerical methods for
solving a system of first-order equations can be employed to solve an nth-
order differential equation (see, e.g., example I). However, in so doing we
may be performing many more operations which are otherwise unnecessary if the
solution of nth-order differential equation were found without changing it to
a system. This is true at least for the case of the Chebyshev series and will
be explained in the ensuing discussion.

Let the nth-order differential equation to be solved assume the form

s@ (1) = w(},¢,¢: C ,¢(““1)) > tlstsl (63)

with the initial conditions
¢(1)(-1) = nj (i=0,1, . .. ,n-1) (64)
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To provide the basis for the construction of the algorithm for the
solution of an nth-order differential equation, define

6, (t) = (1) (x)
$,(t) = ¢(-2)(t)
¢ () = ¢(t)

Then equations (62) and (43) specialize at once to the equations

t
6@ 1) ¢y = ' (n-1)y 5 )
J'*'l (t) - nn-l + [_ EU(U,¢j,¢j,- LR ’¢J )du

1

6 M ey =+ j (0-1) 4y du
-1

L 5
& (65)
t
¢j+1(t) = ng +J J+1(u)du
« -1 J
with
¢(i) = n, (i=0,1, ... ,n1) (66)

The sequence of functions |¢ (t)l (as its counterpart {¢i j(t)] of

J— > 3=
eqs. (42) and (43)) is expected to converge uniformly to a function ¢(t) sat-
isfying equations (63) and (64) on the closed interval [-1,1]. Note that
unlike the case where an nth-order differential equation is treated as a sys--
tem of n first-order differential equatlons, the integration involved in
each of equations (65) except the first is applied to the derivatives of the
current iteration. Numerical results show that this gives algorithm II a
clear advantage over algorithm I in terms of the number of iterations required
to solve an nth-order differential equation for a given convergence error
(see example II). Furthermore, if the Chebyshev series of

SO w(% 050055 - - - ,¢§“‘1ﬁ
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is available, the n integrals of (65) can be obtained readily by making use
of the relation (B19) between the Chebyshev coefficients of the function and
those of its derivatives. Hence, if an algorithm similar to algorithm I is
constructed for the nth-order differential equation, the modified interpo-
lating polynomial is used only to approximate the nth derivative during one
iteration. This is in contrast to algorithm I which utilizes Qy(t) n times
in the approximation of first derivatives. Since the computation of the modi-
fied interpolating polynomial takes up the bulk of the time per iteration, the
difference in time spent solving the same differential equation may be
considerable.

Algorithm II (for an nth-order equation)

The construction of the algorithm for an approximate solution of an nth-
order differential equation, as in the case of algorithm I, is based on the

éssumption that the sequences of functions {¢§1)(t)} (i=0,1, . . . ,n)
j=0

can be represented accurately by polynomials of sufficiently high degree. Let

Mén-i Mtn-i
Z b7, (1) and Z BT (1) (67)
k=90 k=0
denote, respectively,
&3 (1) .
¢j (t) and ¢j+1(t) i=20,1, . . . ,n) (68)

For notational simplicity, equality between the respective expressions (67)
and (68) is assumed to hold. The approximate solution of equation (63) with
initial conditions (64) for a prescribed convergence error e 1is obtained as
follows:

1. Set

km

tk = COS y 7 s k=0,1, . .. ,M+1

(This computes the M + 2 points where Ty, ,(t) has an extremum.)

2. Set
bgl) = 2n, (i=0,1, . .. ,n-1)
b]gl) = 0 (i = 0,1: s e s ,n-l; k = 1’2, A ’M+n*i)

) (This is equivalent to the initial approximations ¢(1)(t) 0y
i=0,1, . .., n-1).)



3. Compute
M+n-i

05D () = D oW ey Ge0, ... el k= 0,1, L. LMD
=0

4. Compute

SRCRIERT IAILICS TS TCS PRI SR CS)

k = 0,1, . . . ,M+1)
5. Compute (using eq. (B27))

S, M
p(™ = 2 3 o5 (6 Te(8) k=01, .. ..M
r=0

(We have here approximated ¢§22(t) by the Mth degree polynomial

M_, .
(n) _ (n)
k=0

where according to theorem B6

@ 2! (0) (1) (n-1) )
B ¥ > ﬁ'J'l w[t,¢j ’¢j P ) (ti}Tk(t)(l - t2)~1/2 g¢

for a sufficiently large M.)

6. Compute (by means of theorem B4 in appendix B and eq. (A31)) for
i=n-1,n-2, , ., . ,0 ‘

pli+1)
B(i) _ M#n-i-3
Mtn-i ~ 2Z(M + n - 1)
gli+1) _ p(i+1)
G) _ k-1 " Sk _ SR
Bkﬂ = 5% k=12, .. ,M+n-1i-1)
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M+n

81 - 2fn, - :E:: (—l)kBéi)
k=1

(We have in this step obtained the n integrals

M+n-i ) M ()
2&;' ! Z | i = . ,n-1
By Tk(t) of B Tk(t) (i=0,1, ... ,n-1))
k=0 k=0
7. If Béi) - bén) < e for all k, we are through.

8. Otherwise, set
bél) = Bél) i=0,1, ... ,n; k=0,1, . . . ,Mtn-i)

and return to step 3.

(M) (£ = 0 step 7

Note: To take into consideration the case when ¢gn)(t) s ¢

should be skipped until the second iteration.

Example II

To provide a basis for comparison for both algorithms, we shall solve the
differential equation (48) by algorithm II for the same prescribed convergence
error and subintervals as in example I (i.e., € = 0.5x107!0 and xy = 0, x; = 1,

» Xg = 6).
For each subinterval [xr_l,xr] (r=0,1, . . . ,6), let x=ct + d,
1 1
¢ = 70pa = %), d = 500+ x,). Thus,
F g = FW er + ) = 256D (i=0,1,2,3)

Substitution into (48) then yields

e = 5 {117 - 2809n () - 1

the form required by the algorithm. The solution is found as six initial-
value problems corresponding to the six subintervals. The initial conditions
used for each subinterval are determined by the solution at the end point of
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the previous subinterval except the first where

oW1y = L W G=0,1, ... ,11)

2i

A comparison of computer results obtained by algorithm II with that of
algorithm I shows agreement to 10 decimal places. Computer results also show

that the coefficients Bél) (i =0,1, . . . ,n) exhibit no change to 10
decimal places for M > 11. Consequently, from the discussion in the
preliminary analysis section the approximate Chebyshev series satisfies the
differential equation with an error bound of order e = 0.5x10710.

A comparison of tables III and V reveals that the number of iterations

required for the solution of the aforementioned differential equation is
consistently less for algorithm II than for algorithm I.

TABLE V.- THE INFLUENCE OF M ON THE CONVERGENCE OF ALGORITHM II

Interval
M O/s x<111<sx<2}12<c<x<<3]3<x<4(4c<xs5)5<xx<06
11 10 17 - 24 33 ' 39 40
12 10 17 23 31 37 37
13 10 17 23 28 34 27
14 10 17 23 26 27 26
15 10 17 23 27 28 26

Each entry of this table indicates the number of iterations algorithm II
required to solve equation (48) having the indicated M and interval of inte-
gration. The convergence criterion is e = 0,5x107!0, Since the approximate
Chebyshev coefficients agree to 10 decimal places for all M > 11, the
accuracy of the solution for each M is good to 10 decimal places.

Remarks on Convergence

Since a polynomial is used to approximate

(n) = 1 (1’1-—1)
#5421 (0) w(t,¢j,¢j, SRR > )

the convergence of algorithm II, as in the case of algorithm I, may be influ-
enced by the degree of the approximating polynomial M. Examination of
table V shows that while the number of iterations needed for convergence for
the first three intervals remains essentially unchanged, the number of iter-
ations in the remaining three intervals required for convergence is essen-
tially a decreasing function of M. Thus by a judicious choice of M the
computing time spent for a particular problem may be minimized. However,
when such a choice is unavailable, it is probably better to pick a higher M
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than is thought necessary so that convergence can be achieved within a toler-
able number of iterations. For example, in the case of example II, it would
have been better to pick M = 15 instead of 11,

It will be shown next that the convergence of algorithm II for a fixed

M can be accelerated by methods already proposed for a system of n first-
order differential equations.

Acceleration of Convergence

Note first that the sequences {¢§n)(tk)};=l k=0,1, . .. ,M+ 1)
can be considered as a single sequence of one-dimensional array
("’j,l"”j,z’ Coe ,wj,Mﬂ) G=1,2, . .. (69)
where
by = 0 () (70)

Thus if one thinks of (69) as a rectangular array of one row and M + 2
columns, the methods of MR and MC modification proposed for algorithm I can
also be used in the acceleration of convergence for the nth-order differen-
tial equation. The initiating array (wl,l,wz,l, ... ’wM+2,1) is .

re-evaluated for every M + 2 or every two iterations depending upon whether
MR or MC modification is utilized. Since MR modification is applied to a
single row and MC 1is actually a modification of individual entries here, the
number of operations involved compare with that of algorithm I (applied to the
solution of the same nth-order differential equation) should be considerably
less.

Table VI shows that the number of iterations as well as the machine time
required in the solution of example II for both MR and MC methods is consid-
erably less than that of iteration without modification. It also shows that
MC modification has a definite edge over MR modification both in the number
of iterations and in machine time required for convergence. However, the
comments applied to algorithm I about not precluding MR modification as a
tool in the acceleration of convergence should also be heeded in the present
case.

Table VII is based on the data of tables IV and table VI and illustrates
the advantage of algorithm II over algorithm I in the amount of machine time
spent on solving the same differential equation. It shows that in every case,
whether modification is involved or not, the machine time required by
algorithm I is at least 1-1/2 times that of algorithm II. In the case of MC
modification the ratio of the machine time of algorithm I to that of
algorithm II is as large as 2.86.
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TABLE VI.- A COMPARISON OF THE CONVERGENCE FOR ITERATION WITH
AND WITHOUT MODIFICATION (ALGORITHM II)

Modification Interval 3<xxg4 4 < x<5 5<xzg6 Total
None 33(3.25) 39(3.86) 40(3.98) 112(11.09)
MC 16(1.80) 14(1.57) 8(0.88) 38(4.25)
MR 18(2.21) 15(1.92) 15(1.93) 48(6.05)

Each entry of this table indicates the number of iterations required when
using algorithm II to solve example II for the indicated method of modifica-
tion and interval of integration. The machine time in seconds on the IBM 7094
for the corresponding iteration is given in parentheses. The degree of
approximation is M = 11 and the convergence criterion is e = 0.5x10710,

TABLE VII,- RATIOS OF MACHINE TIME OF ALGORITHM I TO ALGORITHM II

Modi fication—aterval 3<x<4 4<x<5 5<x<6
None 1.59 1.55 1.84
MC 1.87 2.10 2.86
MR 2.03 1.59 1.62

Each entry of this table gives the ratio of the machine time of
algorithm I to that of algorithm II based on tables IV and VI.

Ames Research Center

- National Aeronautics and Space Administration
Moffett Field, Calif., 94035, May 15, 1969
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APPENDIX A
CHEBYSHEV POLYNOMIALS

This appendix is included to facilitate the discussion of the
approximation of functions in terms of Chebyshev polynomials. It also pro-
vides the minimum of the necessary working tools for most numerical work
involving these polynomials. Most of the properties can be found in the works
of Rivlin (ref. 10) and Lanczos (ref. 11). Clenshaw's summation formula for
Chebyshev series is generalized here for the summation of sequences obeying an
nth-order linear recurrence relation (see theorem Al).

Some Properties of Chebyshev Polynomials
Definition.- The polynomial of degree k defined by
Tk(t) = cos(k arc cos t) , -1<t<1 (A1)

is called the Chebyshev polynomial of the first kind of order K or simply a
Chebyshev polynomial.

As an immediate consequence of this definition we have.

Property Al. If k 2 2, then

Tk(t) = 2tTk_l(t) - Tk_zct) (A2)
with
T,(t) =1, T, () =t
From the recurrence relation (A2) we can generate Chebyshev polynomials
up to any order n by setting k=2, 3, .. . , n.

By the change of variable t = cos & one can demonstrate that the

sequence of Chebyshev polynomials ‘Tk(t)l 'is orthogonal on [-1,1] with
k=0

respect to the weight function w(t) = (1-t2)-1/2  that is,

Property A2. For any two Chebyshev polynomials Tm(t) and Tk(t), the
following conditions hold.

0 if m#k
jil T (T () (1 - 272 at={L if m=k #0 (A3)
mT if m=k=20
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Consequently, any results deduced for general classes of orthogonal
polynomials also hold for Chebyshev polynomials.

Property A3 (Orthogonality with Respect to Summation).

Let
.= _Jm_ .
ty = cos g7 (G =0,1, . . . ,N+1) (A4)

If Tp(t) and Ty (t) are any pair of Chebyshev polynomials of orders zero
through N + 1, then

Nl N+ 1 if m=k=0 or N+1
E Tm(tj)Tk(tj) = {(N+1)/2 if m=k #0 or N +1 (A5)
- 0 if m# k
J=0
Furthermore, if T,(t) is a Chebyshev polynomial of any order
N+l' ( ) 0.1
! _ N+ 1 if r =2s(N+ 1) , s = 0,1,2,
Tp(ty) = { 0 if r#2s(N+1), s=0,1,2, (A6)
j=0
Property A4. For all k 2 1, Ty (t) has zeros at
t = cos iZl—gillﬂ G =0,1, ... ,k1) (A7)
and extrema (—l)j at
t =‘%} G =0,1, . .. ,k) (A8)

Property A3 together with equation (A8) is instrumental to the discussion
of the '"Modified Interpolation'" of appendix B. The following property is use-
ful in the integration of a function represented by a series of Chebyshev
polynomials:

Property AS5.

T, (t) , k=0

T,(t)/4 R k=1

T, .(t) T (t))
k+1 k-1
1/2( k+1  k-1/° k

1\
|38}
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Summation of Series of Chebyshev Polynomials

We consider next the summation of a finite series of Chebyshev
polynomials of the form

N
sy(t) = Z' BT, (t) (A10)
k=0

where B are constants. The evaluation of SN(t) can be efficiently

performed by particularization of the following theorem (see also ref. 12):

Theorem Al. 1If N

S = Z ajuy (A11)

k=0

where uy, obeys the nth-order recurrence relation
n
uy = E rj ’kuk_j s k >n (AlZ)
j=1

then S can be evaluated by the formula

n-1 k
S =cqu, + E cplug - E rj,kuk-j (A13)
k=1 j=1
where c4,c, . . . »Cy_, are determined from the recurrence formula
CNel = CN#2 =+ + + = CNyp = 0
n (A14)
Cy = gy + E 5 k+jCk+j (k = N,N-1, . . . ,0)
j=1

The theorem can be established as follows: Replace ax in equation (All)
by equation (Al4) so that -

or
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N n N

S =Z “kUk Z er,k+j°k+j“k

k=0 j=1 k=0

Setting now k + j = m in the double sum and noting that ¢y = 0 for

k=N+1, N+ 2, .. ., N+ n, we have

n N

S = CxUk - 5 ,mCyUn-j

N
k=0 j=1 m=j

or by inverting the order of summation for the double sum, one obtains
N n-1 m N n
S = E CkUk - E E rj,mcmum—j + E E rj,mcmum-j
k=0 =1 j=1 m=n j=l

The collecting of terms in c¢_ then yields

m

n- m N n
S = cpuy + E u, - E rj,mum-j Cp *+ E u, - rj,mum—j <, (A15)

m=1 j=1 m=n j=l

But by equation (Al2)
n .
up - E rj mum—j = 0 for m>n
s
j=1

This proves that equation (Al3) holds.

Useful special cases:

1. For =n = 1, we have

W = rkuk_l (k > 1) (A16)
so S of (Al3) becomes
S = cqyuy a1n
with
| CNe1 = 05 Ck = ap + TyyiCkyy (k = N,N-1, . . . ,0) (A18)
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2. For n = 2, we have

Ug = Ty kU 1 * Ty kYoo (A19)

so S of equation (Al3) becomes
with

CN+1 = CN+2 = 0

Ck = 8k * Ty ,k+1%+1 T T2, k+2%+2 (A21)
(k = N,N-1, . . . ,0)

The following properties are applications of the special case of n = 2
to sums of Chebyshev polynomials:

Property A6. If

N
1
S(t) = E Bka(t) (A22)
k=0
then also
BO
S(t) = —5-+ ¢yt - ¢, (A23)

where ¢, and ¢, are generated by the recurrence relations

SNe1 T CNe2 T 0
(A24)
¢ = By + 2tcp,q - Crao (k = N,N-1, . . . ,1)
(This formula follows from eq. (A21) and the fact that
T(t) = 2T (1) - T, (1) Gk > 2))
Property A7. If N
1
S(t) = E BkTZk(t) (A25)
k=0 '

40



then also

B
S(t) = o+ ¢, (22 - 1) - ¢, (A26)

where c¢; and c, are generated by the recurrence relations

CN+1 T a2 = 0
(A27)
¢ = B + 2(2t? - 1)C,1 = Skag (k = N,N-1, . . . ,1)
(The formula follows from eq. (A21) and the fact that
= 2
Tzk(t) = 2(2t% - )T, _, - Tzk_z(t) - Tzk-q(t) k > 2))
Property A8. If N
S(t) = E ByToxs+1(t) (A28)
k=1
then also
S(t) = (2t - 1)(c; - ¢y) (A29)
where ¢, and c, are generated by the recurrence relations
c =c =0
N+1 N+2 (A30)

¢ = Bx + 2(2t% - 1)c -c (k = N,N-1, . . , ,1)
k k+1 k+2

(The formula follows from equation (A21) and the fact that

T2k+l (t) = 2(2t2 - l)TZk—l(t) - TZk—3(t))

Formulas for evaluating Sy(t) of equation (Al0) at special values of t
are given as follows:

Property A9. If

SN() = Y BT(®) . -lstsl (A10)
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then

N
S (-1) .= Z (-1)*B, (A31)
k=0
N 1
sy(0) = Z (‘1)sz1< (A32)
k=0
and
N 1
sy (1) =Z B (A33)
k=0
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APPENDIX B
THE CHEBYSHEV SERIES AND APPROXIMATION BY MODIFIED INTERPOLATION

The Best Approximating Polynomial and the Chebyshev Series

Let f£(x) be a continuous function defined on a closed interval [a,b] and
let & be a prescribed positive number, The existence of a polynomial P(x)
for which

ax IP(x) - £(x)]| < ¢ (B1)

is given by a well-known theorem of Weierstrass. We introduce here the con-
cept of the best approximating polynomial to facilitate later discussion.
(For a detailed discussion of the best approximating polynomial and its prop-
erties, see ref., 13,)

Definition.- Let Dy denote the set of polynomials of degree < N. A
polynomial P*(x)eDy having the maximum residual:

a?iﬁ [£(x) - P*(x)]| = mlgN (g?%?b [£(x) - P(X)I) (B2)

is called a best approximating polynomial of degree N of £(x) in the
Chebyshev sense.

Definition.- The quantity

EN(E) = pig (axgggb |£(x) - P(x) l) (B3)

is called the smallest deviation of the polynomials of D, from £(x) or the
minimax.

The best approximating polynomial always exists and is unique. It is
completely characterized by the theorem of P. L. Chebyshev.

Theorem Bl. Let f£(x) be a function continuous on [a,b]. Then any
polynomial P(x)eDy is the best approximating polynomial if and only if
there exist N + 2 points

a <Xy <X, <. .. <Xy, <h (B4)

for which

|[£(x;) - P(x;)] = max |£(x) - P(x)]| = i=1,2, ... ,N+2) (B5)
with the function f(x) - P(x) alternating in sign’at consecutive values of
Xi.

A useful consequence of the above theorem is:
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Corollary.- If f(x) is continuous on [a,b] and if for any Q(x) in Dy
the function f£(x) - Q(x) alternates in sign on a set of N + 2 distinct
points

asx <x, <...< Xy,o S b (B6)

with
|£(x;) - Q(x;)| = M (B7)

then
M < EN(f) (B8)

Let ¢(t) be continuous on the closed interval [-1,1]. We shall be

interested in the expansion
i 1
o(t) = E M), -lstsl (89)
where Ty (t) are Chebyshev polynomials (see appendix A) defined by
Tk(t) = cos(k arc cos t) (B10)
Definition.- In the particular case where
2 -1/2
S $OIT (D) (1 - £2)7/ (B11)

the series (B9) is known as the Chebyshev series for ¢(t), and the coeffi-
cients Ay are called Chebyshev coefficients. (See refs. 10 and 13 for a

detailed treatment of expansion in Chebyshev series, and of certain relations
between the best approximating polynomial and the Chebyshev series.)

The following exhibits a large class of functions which have uniformly
convergent Chebyshev series expansions:

Theorem B2.- If ¢(t) satisfies the Hélder condition, that is, if there
exists constants M and o such that, for all t; and t, in [-1,1]

lo(t1) - o(ta)] < M|ty - t,]® (o > 0) (B12)

then ¢(t) can be expanded in a uniformly convergent Chebyshev series. (For
efficient computation, however, the given function should have stronger prop-
erties such as differentiability. Consequently, prior to expansion in

Chebyshev series, it may be necessary to provide such properties by suitable
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transformations or subdivision of the interval of definition.)

Let the partial sum formed by the first N + 1 terms of the Chebyshev
series of a function ¢(t) be denoted by

N
sy (t) =Z AT, (2) (B13)
k=0

and the maximum error of SN(t) by

og(e) = max [o(t) - Sy(t)] (B14)
-1<t<l

we note here that, since SN(t) is a linear combination of polynomials at

most degree N, the partial sum S, (t)eDy.

The following theorem gives an important inequality between the minimax
error EN(¢) and the error UN(¢):

Theorem B3 (A. Lesbesque).- If ¢(t) is continuous on [-1,1], then

on(#) < (3 + log N)Ey(s) (B15)

The above inequality means that for practical purposes the truncated
Chebyshev series is just as good as the best approximating polynomial.

Some useful inequalities for a function ¢(t) which is expandable in a
uniformly convergent Chebyshev series are:

En(9) = oy(e) < A (B16)

_max [Pr(e) - Sy(0)] < 2 RZN;I | Ay | (B17)

1/2 Z Al% s EN(¢) s Z ]Ak] (B18)
k=N+1 k=N+1

A useful relation between the Chebyshev coefficients of a function and
the Chebyshev coefficients of its derivative is given by:
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Theorem B4.- Let ¢(t) be defined on [-1,1]. If ¢'(t) is integrable,
then
(1) 1) k =1,2, . . .) (B19)
o Ak

where (0) and Aé

1) are Chebyshev coefficients of ¢(t) and ¢'(t),
respectively.

(The validity of eq. (B19) can be demonstrated by making the change of
varigble t = cos & in eq. (B11l) and then integrating by parts.)

Approximation by Modified Interpolation

Let f(x) be continuous on [a,b] and let DN denote the set of all

polynomials of at most, degree N. Recall that the best approximating poly-

nomial of f£(x) as defined in the preceding section is the polynomial
P*(x)eDy for which

max |f(x) - P*(x)] = N (a?%%b |£(x) - P(x)l)

It has also been stated that the necessary and sufficient condition for a
polynomial P(x)sDN to be a best approximating polynomial is that there

exist in [a,b] at least N + 2 points

< <, . <
X1 < X2 XN+2

for which

[£(x;) - P(xp)] = max, |£(x) - P(x;)] = (i=1,2, ... ,N+2)

with f(x) - P(x) alternating in sign at consecutive values of Xx..

In view
of this and the fact that TN+1(t) assumes its extrema (-—1)J at the points

; T, 3= 0,1, . .. LNkl

it is easy to see that the following holds:

Lemma.- If

N+1 ,
Gy, () =Z B Tx (t) (-1 st < 1) (B20)
k=0
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then the polynomial

N 1
H(t) = Z Bk Ty (t) (B21)
k=0

is the best approximating polynomial of at most, degree N to Gy, 1(t), and
the function 6N+1 N+1(t) assumes its extrema (- 1) Bn+y @t the points

t; = cos NJE - (G =0,1,2, . . . ,N+I) (B22)

The interpolating polynomial PN+1(t)‘" Attention is now turned to the

interpolating polynomial used by Clenshaw in reference 3. A modified version
of it is a basic tool of the algorithms of this report. His polynomial
assumes the form

N+1
pN+1 (t) =k2 By T () (B23)

and interpolates a given function ¢(t) at N + 2 points of t, given by
equation (B22). Thus the coefficients By of PN+l(t) can be determined by

solving directly the linear system

N+1

PO ERICY G

k=0

n

0,1,2, . . . ,N+l) (B24)

of N + 2 equations in N + 2 unknowns. However, these equations can best

be solved by taking advantage of the orthogonality property of Chebyshev
polynomials with respect to summation. First multiply each one of the systems
of equations (B24) by Tm(tj) and then divide the first and last equations by

2. Hence, upon adding the resulting equations, we have

N+1 N+1 N+1

Z 6 ()T ct)-Z Z BTy (£4) Ty ()
i=o0 k=0

\Changing the order of summation yields

N+1" N+1" N+1 "
E ¢(tj)Tm(tj) = z By E Tk(tj)Tm(tj)
j=0 k=0 j=0
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and thus, by equation (A5),

N+l 1" -
__ 2 -
By = T Z ' ¢ (£5)Ty (t5) (k = 0,1, . . . ,N+1) (B25)
j=0
Since
i
Tk(tj) = COs g 1ET-= Tj(tk) (B26)
the coefficient Bk can be written also as
) N+1 "
Bk = N—':_——l— E ¢(tj)Tj (tk) (k = 0,1, . . s ,N‘Fl) (327)
j=0

We note here that equation (B27) is more desirable than (B25) from the point
of view of computation. Since By 1is a finite series of Chebyshev poly-

nomials evaluated at ty, it can be readily calculated by means of Property A6.

Some important properties of the approximating polynomial P,.,(t) are
given in the following theorem.

Theorem B5.- If a function ¢(t) is continuous on [-1,1], and PN+l(t)
is the approximating polynomial defined by equations (B23) and (B27),
then for each k

[

B = A Z (Azr(N+1)-k * A2r(N+1)+k) (B28)

r=1

where Ak are the Chebyshev coefficients of ¢(t), and
1
5 IByarl < Ey(9) (B29)

Equation (828) can be demonstrated to hold by means of equations (AS? and
(A6). To prove (B29) note that by the lemma at the beginning of the section

N

Qy(®) = ) BTyt
k=0

is the best approximating polynomial of maximum degree N to PN+1(t). The
residual function PN+1(t) - QN(t) = (1/2)BN+1TN+1(t) assumes its extrema
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(—l)j(BN+1/2) at the points t; = cos[jn/(N + )], (j = 0,1, . . . ,N+1). Mow
since ¢(t) coincides with PN+1(t) at the same N + 2 points, the residual

function ¢(t) - QN(t) also assumes the values (—l)J(B /2) at these points.

N+1
Recall that if f£(x) is continuous on [a,b] and if for any QN(X) in DN the
residual function f£(x) - QN(X) alternates in sign on a set of distinct points
S X) <Xy <. <X S b with lf(xi) - QN(xi)l = M, then M < EN(f).

Hence it follows that (1/2)lBN+l| < EN(¢). This proves equation (B29) and
also the theorem.

The modified interpolating polynomial QN(t).— The polynomial PN+1(t) is

an interpolating polynomial having the N + 2 extrema of TN+1(t) as the
points of interpolation. Let PN(t) denote the interpolating polynomial hav-
ing N + 1 extrema of Ty(t) as the points of interpolation. We discuss next

the modified interpolating polynomial QN(t) formed by truncating the last
term of PN+1(t); that is,

N
1]
Q) = D BT, (®) (B30)
k=0
and also point out why QN(t) is preferred over PN(t) as an approXximating

polynomial.

Consider first the maximum deviation of PN+1(t) from SN+1(t), the first

N + 2 terms of the Chebyshev series. Writing

N+1
1 1 :
PN+1(t) - SN+1(t) = z : (B - A)T(t) + (-2- BN+1 - AN+1)TN+1(t)
k=0
and taking absolute values one obtains
N, 1
[Py (8) - Sy, ()] < Z : 1B - A+ 15 By, - Ay (B31)

k=0

But we have by equation (B28) the inequalities
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5B, - A, < FAones | LR LS )
lBl - ALl s [AgNerl + TAggesl # A sl * 1Aunes]
> (B32)
IByy = Ave b s Il = TAgg |+ Tagg gl + lagy )+
1By - Al s Ayl + 1Aggol 1Ayl * [Asyul +
17 Ber A | S [Aspes| « lAsyesl + - - ]

Add the N + 2 equations and sum the right member according to ascending
indexes to yield

0

zN: By - Al + |%~ Byey - AN+l sz 1A, | (B33)

k=0 k=N+2

It follows from inequalities (B31) and B(33) that

(o]

_mex |Pheq (8) - Syer (B)] < Z [ A | (B34)
k=N+2

The application of the triangle inequality

l6(t) = Py, ()] = 98D = Sppq ()] + [Suy (8) = Pyyy (8]

together with inequalities (B17) and (B33) yields the error bound for Py, (t)

maX lo(t) - Py, (B)] <2 Z (B35)

k=N+2

We consider now the modified polynomial QN(t) formed by the first N + 1
terms of PN+1(t)

Since N

lQy(t) - SN(t)ISE 1By - A

k=0
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it follows easily from (B32) that

max [0(t) - Qu(0)] s oy(6) + max |Qu(t) - Sy < |Ayy,+2 D Iyl

-lstst k=N+2
(B36)
On the other hand, we have by replacing N + 1 of inequality (B35) by N
max t) - P (t}] < E Ayl £ 2 (A + E A B37
‘k=N+1 k=N+2

Hence it can be seen from inequalities (B36) and (B37) that the maximum error
for Py(t) for sufficiently large N can be two times larger than that of

Qn(t). Moreover, since

lo(t) - au(edl s fe(e) - B (0)] + [P (€] - Qy(t)]

N

A

we have from the fact that ITN+1(t)I < 1 and the inequality (B35) that

1 -
max (¢(t) - (t){ <= |B + 2 A (B38)
e | | €3 1By, +2 ) In
k=N+2
But
1
5 |Bye1l < Eylo) < _pax; le(e) - Qu(e)]
Consequently,
1 1
7 1Byl = _max fo() - qu(ed] = 5 [Byal + 2 RENj A, ] - (B39)
=N+2
Note tﬁat since
N_, 1
¢(tj) - z : Bka(tj) =5 BN+1TN+1(tj)
k=0

by (24), the residual function ¢(t) - Qy(t) also assumes the vaiues
(—l)J(BN+1/2) at N + 2 points given by (B22).
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Thus if

Z A

2
k=N+2

is small relative to (1/2)|BN+1| (and this is often the case in practice), we
have

1
max e(e) - u(e) [~ 3 |By,,|

and QN(t) closely approximates the best approximating polynomial of ¢(t).
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APPENDIX C

FORTRAN IV SUBROUTINES FOR ALGORITHMS I AND II

Subroutine AL ALGl

Identification

AL ALGl, Chebyshev Series Integration of a System of n First-Order Nonlinear
Differential Equations
FORTRAN IV, Double-Precision Subroutine

Pu;Eose

This subroutine is used to generate an approximate Chebyshev series solution
for a system of n first-order nonlinear differential equations with n ini-
tial conditions. The differential equations are of the form

! .
EE*'= w(t>¢l’¢2: L ’¢n) ’ ~1 < t < 1 (1 = 1:2: o s s n)

with the initial conditions
¢i(‘1) = ni (i = 1’2: v e e ,n)

The approximate Chebyshev series solution and derivatives are provided in the
form of the finite series

3P (t) w~ Z' Blgljg_Tk(t) (p=0,1;1i=1,2,...,n

where T, (t) are Chebyshev polynomials defined by

Ty (t) = cos(k cos”! t) , -1 <t

IA
P

The accuracy of the approximate solution depends on the convergence error e
and the degree of polynomial approximation M prescribed by the user. When
both € - 0 and M » =, the approximate Chebyshev series solution approaches
that of the infinite Chebyshev series expansion (see main body of the report
for choice of € and M and the estimation of errors).
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Usage

The routine is entered via the statement

where
N(=n)

KIN

ETA

EPSN

KIT

TR

PHI

XR

XS

54

CALL ALGl (N, KIN, M + 1, M + 2, ETA, EPSN, KIT, TR, PHI, XR, XS, B, IC,

NER, DERIV)

is the number of first-order differential equations.

is an integer code used to indicate the method of computation desired:
KIN = 0, for straight iteration, (see algorithm I, page 13).
KIN 1, for iteration with modification of columns (see page 26).
KIN = 2, for iteration with modification of rows (see page 25).

is the degree of polynomial approximation used to represent the deriva-
. 1 _
tives ¢i(t) = wi(t,¢1,¢2, coee 50)e

is a double-precision array of 3n locations. The first n locations
are used to store the n initial conditions njy i=1,2, ... ,n

in the order of ascending i. The remaining locations are used
internally by the subroutine.

is the convergence error e prescribed by the user and is a double-
precision variable.

is the maximum number of iterations allowed by the user.

is a double-precision array of M + 2 locations reserved as working
storage for the subroutine.

is a double-precision array reserved as working storage for the
subroutine. The number of locations allocated are

2nM + 2) for KIN =0
nn + 3)(M + 2) for KIN =1
nM+ 4)M + 2) for KIN = 2.

is a double-precision array of n(4n + 2) locations reserved exclu-
sively as working storage for the case with KIN = 1. XR is a dummy
double-precision variable for the cases with KIN = 0 and 2.

is a double-precision array of (M + 1)(4M + 6) locations reserved
exclusively as working storage for the case with KIN = 2. XS is a
dummy double-precision variable for the cases with KIN = 0 and 1.



IC

NER

DERIV

is a double-precision three-dimensional array of dimension
(M + 2) x N x3, The first two rectangular arrays of dimension
(M + 2) x N are used to store the approximate Chebyshev coefficients

of ¢;(t) with

Bﬁo? stored in B(K + 1, I, 1)
,i
for i=1=1,2,...,n k=XK=0,1, ...,M+1
Bél% stored in B(K + 1, I, 2)
3
for i=1=1,2, ... ,n; k=K=90,1, . . ., M

The remaining locations are used internally by the subroutine.

is the number of iterations executed by the subroutine to achieve
convergence.

is the error code. NER = 0 is a normal return; NER = 1 indicates that
the number of iterations had exceeded KIT,

is the name of a user supplied subroutine for the computation of the n
first derivatives ¢.(t) (see Derivative Subroutine below). The name
DERIV (or whatever name the user chooses) must appear in an EXTERNAL
specification statement in the calling program.

Derivative Subroutine

A subroutine for the computation of the first derivatives ¢;(t)

i =

1, 2, . . . , n) must be supplied by the user and must be of the

following format:

SUBROUTINE DERIV (N, T, PHI, PSI)
DOUBLE PRECISION T, PHI, PSI
DIMENSION PHI(N), PSI(N)

PSI(1) = . . .

PSI(2) = . . .

PSI(N) = . .
RETURN
END

The symbols of the DERIV subroutine are defined as follows:

N(=n)
T

PHI

is the number of first-order differential equations.
is the independent variable.

is an array of n locations used to store the values of ¢i(t)

(i=1, 2, . . ., n) in the order of ascending 1i.
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PSI is an array of n locations used to store the n first derivatives

¢;(t) = i (t, 615 ¢35 « « . , ¢n) (1 =1, 2, ..., n) in the order
of ascending 1i.

Other Subroutines Required

The subroutines

1. AL CHBY
2. AL DPIN

Evaluation of Solution and Derivatives

The finite series

M+1—p |
o) T PN w-oni-12 ... W)

k=0
may be evaluated as a function of the independent variable t by means of

subroutine AL CHBY (see page 59), which in this case may be accessed via the
statement

CALL CHBY (B(1, I, P+ 1), M+ 2 - P, T, SUM)

where

I, M, P are integers set equal to i, M and p, respectively.
B(1,I,P + 1) 1is the location of Bi?g.

T is the independent variable t.

SUM is the evaluated result. :

Subroutine AL ALG2

Identification

AL ALG2, Chebyshev Series Integration of an nth-order Nonlinear Differential
Equation
FORTRAN IV, Double-Precision Subroutine

Pugpose

This subroutine is used to generate an approximate Chebyshev series solution
for an nth-order nonlinear differential equation with n initial conditionms.
The nth-order differential equation is of the form

s™ (e - v(e.0.0", . . . ,¢(“'1)) »  -lgtgl
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with the initial conditions

¢(1)("'1) = ni (1 =0,1, . . . ,N~1)

The approximate Chebyshev solution and its derivatives are provided in the
form of the finite series

M+n-1i

oD (1) ~ Z Blgi)Tk(t) G=0,1, ... ,n
k=0

where Tk(t) are Chebyshev polynomials defined by
T, (t) = cos(k cos™! t) , -l<t<1

The accuracy of the approximate solution depends on the coflvergence error e
and the degree of polynomial approximation M prescribed by the user. When
both e » 0 and M + », the approximate Chebyshev series approaches that of the
infinite Chebyshev series expansion. (See main body of the report for choice
of & and M and the estimation of errors.)

Usage

The routine is entered via the statement

CALL ALGZ2 (N, KIN, M + 1, M + 2, ETA, EPSN, KIT, TR,‘PHI, XR, B, IC, NER,
NDER)

where

N(=n) 1is the order of the differential equation.

KIN is an integer code used to indicate the method of computation desired:
KIN = 0, for straight iteration (see algorithm II, page 30).
KIN = 1, for iteration with modification of individual entries (see

page 34).

KIN = 2, for iteration with modification of rows (see page 34).

M is the degree of polynomial approximation used to represent the nth
derivative ¢(n)(t) = w(t,¢,¢', .o . ,¢(n)).

ETA is a double-precision array of 2n locations. The first n cells are
used to store the n initial conditions n4i (i = 0,1, . . . ,n-1)

in the order of ascending i. The remaining cells are used inter-
nally by the subroutine.

is the convergence error e prescribed by the user and is a double-
precision variable.
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TR is a double-precision array of M + 2 cells reserved as working storage
for the subroutine.

PHI is a double-precision array reserved as working storage for the sub-
routine, The number of locations allocated are

n+ 1M+ 2) for KIN = 0
n+3M+ 2) for KIN =1
M+2)M+n+ 3) for KIN = 2,
XR is a double-precision array of (M + 1)(4M + 6) locations reserved
exclusively as working storage for the case with KIN = 2. XR is a
dummy double-precision variable for the cases with KIN = 0 and 1.

B is a double-precision two-dimensional array of dimension
M+mn+ 1) x (n+ 2) with

Bﬁl) stored in B(K + 1, I + 1)

for i=1I=0,1, . .. ,n; k=K=0,1, ... ,M+n- 1.
The remaini¥g cells are used internally by the subroutine,

I1C is the number of iterations executed by the subroutine to achieve
convergence.

NER is the error code. NER = 0 is a normal return; NER = 1 indicates that
the number of iterations exceeded KIT.
NDER is the name of a user supplied subroutine for the computation of the

nth derivative ¢(n)(t) (see Derivative Subroutine below). The name
NDER (or whatever name the user chooses) must appear in an EXTERNAL
specification statement in the calling program.

Derivative Subroutine

A subroutine must be supplied by the user to compute the nth-derivative
¢(n)(t) and must be of the following format:
SUBROUTINE NDER (N, T, PHI, PSI)
DOUBLE PRECISION T, PHI, PSI
DIMENSION PHI (N)
PSI = . . .
RETURN
END
The symbols of the NDER subroutine are defined as follows:
N(=n) 1is the order of the differential equation.

T is the independent variable t,

PSI is the value of nth derivative ¢(n)(t) = w(£,¢,¢',. . . ¢(n_LD
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. PHI is an array of n locations used to store the values of ¢(1)(t)
1=0,1, . .. ,1n - 1) in the order of ascending i.

Other Subroutines Required

1. AL CHBY
2, AL DPIN

Evaluation of Solution and Derivatives

The finite series

s () ~ E BT (1) =01, ... ,n

may be evaluated as a function of the independent variable t by means of
subroutine AL CHBY (see below), which in this case may be accessed via the
statement

CALL CHBY (B(1, I + 1), M+ 1 +N-1, T, SUM)
where

I, N, M are integers that take on the values of i, n, and M, respectively.

B(1,I+1) is the location of Bgl).

T is the independent variable.

SUM is the evaluated result.

Subroutine AL CHBY

AL CHBY Evaluation of A Finite Series of Chebyshev Polynomials
FORTRAN IV, Double-Precision Subroutine

PurEose
This subroutine is used to evaluate a finite series of the form
N
1
S(t) = E Bka(t) s -1 <t<1
k=0
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where Tk(t) are Chebyshev polynomials defined by

i
Tk(t) = cos(k cos-! t)
Usage
This subroutine is entered via the statement
CALL CHBY (B, N + 1, T, SUM)
where

B is a double-precision array of N + 1 locations used to store By in the
order of ascending k.

N is the order of the highest order Chebyshev polynomial.
T is the independent variable t and is a double-precision variable.

SUM is the sum S{t) and a'double-precision variable.

Method (See eq. (A23).)

Subroutine AL DPIN

Identification

AL DPIN, Matrix Inversion
FORTRAN IV, Double-Precision Subroutine

Purpose
This subroutine is used to calculate the inverse of a square matrix A.
This subroutine is entered via the statement
CALL DPIN (A, N, KDET)
The parameters are defined as follows:
A is a double-precision two-dimensional array of dimension N x N wused to
store elements of the matrix A. Upon return, the inverse A~! will be

found in the array A.

N is the order of matrix A.
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KDET is an error code. KDET = 0 is a normal return; KDET = 1 indicates that
A is singular.

Method

Jordan's method of elimination is used to calculate A~! (see ref. 14).
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